Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; : e0010524, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712930

RESUMEN

Wastewater surveillance can reveal population-level infectious disease burden and emergent public health threats can be reliably assessed through wastewater surveillance. While molecular methods for wastewater monitoring of microorganisms have traditionally relied on PCR-based approaches, next-generation sequencing (NGS) can provide deeper insights via genomic analyses of multiple diverse pathogens. We conducted a year-long sequencing surveillance of 1,408 composite wastewater samples collected from 12 neighborhood-level access points in the greater Tempe area, Arizona, USA, and show that variation in wastewater viruses is driven by seasonal time and location. The temporal dynamics of viruses in wastewater were influenced cyclically, with the most dissimilarity between samples 23 weeks apart (i.e., winter vs summer, spring vs fall). We identified diverse urinary and enteric viruses including polyomaviruses, astroviruses, and noroviruses, and showed that their genotypes/subtypes shifted across seasons. We show that while wastewater data of certain respiratory viruses like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly correlate with clinical case rates, laboratory-reported case incidences were discordant with surges of high viral load in wastewater for other viruses like human coronavirus 229E. These results demonstrate the utility of wastewater sequencing for informing decision-making in public health.IMPORTANCEWastewater surveillance can provide insights into the spread of pathogens in communities. Advances in next-generation sequencing (NGS) methodologies allow for more precise detection of viruses in wastewater. Long-term wastewater surveillance of viruses is an important tool for public health preparedness. This system can act as a public health observatory that gives real-time early warning for infectious disease outbreaks and improved response times.

2.
Front Physiol ; 15: 1248276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699144

RESUMEN

Introduction: It may take decades to develop cardiovascular dysfunction following exposure to high doses of ionizing radiation from medical therapy or from nuclear accidents. Since astronauts may be exposed continually to a complex space radiation environment unlike that experienced on Earth, it is unresolved whether there is a risk to cardiovascular health during long-term space exploration missions. Previously, we have described that mice exposed to a single dose of simplified Galactic Cosmic Ray (GCR5-ion) develop cardiovascular dysfunction by 12 months post-radiation. Methods: To investigate the biological basis of this dysfunction, here we performed a quantitative mass spectrometry-based proteomics analysis of heart tissue (proteome and phosphoproteome) and plasma (proteome only) from these mice at 8 months post-radiation. Results: Differentially expressed proteins (DEPs) for irradiated versus sham irradiated samples (fold-change ≥1.2 and an adjusted p-value of ≤0.05) were identified for each proteomics data set. For the heart proteome, there were 87 significant DEPs (11 upregulated and 76 downregulated); for the heart phosphoproteome, there were 60 significant differentially phosphorylated peptides (17 upregulated and 43 downregulated); and for the plasma proteome, there was only one upregulated protein. A Gene Set Enrichment Analysis (GSEA) technique that assesses canonical pathways from BIOCARTA, KEGG, PID, REACTOME, and WikiPathways revealed significant perturbation in pathways in each data set. For the heart proteome, 166 pathways were significantly altered (36 upregulated and 130 downregulated); for the plasma proteome, there were 73 pathways significantly altered (25 upregulated and 48 downregulated); and for the phosphoproteome, there were 223 pathways significantly affected at 0.1 adjusted p-value cutoff. Pathways related to inflammation were the most highly perturbed in the heart and plasma. In line with sustained inflammation, neutrophil extracellular traps (NETs) were demonstrated to be increased in GCR5-ion irradiated hearts at 12-month post irradiation. NETs play a fundamental role in combating bacterial pathogens, modulating inflammatory responses, inflicting damage on healthy tissues, and escalating vascular thrombosis. Discussion: These findings suggest that a single exposure to GCR5-ion results in long-lasting changes in the proteome and that these proteomic changes can potentiate acute and chronic health issues for astronauts, such as what we have previously described with late cardiac dysfunction in these mice.

3.
medRxiv ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38586006

RESUMEN

Areas of dense population congregation are prone to experience respiratory virus outbreaks. We monitored wastewater and clinic patients for the presence of respiratory viruses on a large, public university campus. Campus sewer systems were monitored in 16 locations for the presence of viruses using next generation sequencing over 22 weeks in 2023. During this period, we detected a surge in human adenovirus (HAdV) levels in wastewater. Hence, we initiated clinical surveillance at an on-campus clinic from patients presenting with acute respiratory infection. From whole genome sequencing of 123 throat and/or nasal swabs collected, we identified an outbreak of HAdV, specifically of HAdV-E4 and HAdV-B7 genotypes overlapping in time. The temporal dynamics and proportions of HAdV genotypes found in wastewater were corroborated in clinical infections. We tracked specific single nucleotide polymorphisms (SNPs) found in clinical virus sequences and showed that they arose in wastewater signals concordant with the time of clinical presentation, linking community transmission of HAdV to the outbreak. This study demonstrates how wastewater-based epidemiology can be integrated with surveillance at ambulatory healthcare settings to monitor areas prone to respiratory virus outbreaks and provide public health guidance.

4.
Emerg Infect Dis ; 29(11): 2380-2382, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37705075

RESUMEN

We conducted surveillance of respiratory syncytial virus (RSV) genomic sequences for 100 RSV-A and 27 RSV-B specimens collected during November 2022-April 2023 in Arizona, USA. We identified mutations within prefusion F-protein antigenic sites in both subtypes. Continued genomic surveillance will be critical to ensure RSV vaccine effectiveness.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Arizona/epidemiología , Proteínas Virales de Fusión/genética , Virus Sincitial Respiratorio Humano/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Mutación
5.
Microbiol Spectr ; 11(4): e0525822, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37306573

RESUMEN

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, mutations arise that will allow the virus to evade immune defenses and therapeutics. Assays that can identify these mutations can be used to guide personalized patient treatment plans. Digital PCR (dPCR) is a fast and reliable complement to whole-genome sequencing that can be used to discriminate single nucleotide polymorphisms (SNPs) in template molecules. Here, we developed a panel of SARS-CoV-2 dPCR assays and demonstrate its applications for typing variant lineages and therapeutic monoclonal antibody resistance. We first designed multiplexed dPCR assays for SNPs located at residue 3395 in the orf1ab gene that differentiate the Delta, Omicron BA.1, and Omicron BA.2 lineages. We demonstrate their effectiveness on 596 clinical saliva specimens that were sequence verified using Illumina whole-genome sequencing. Next, we developed dPCR assays for spike mutations R346T, K444T, N460K, F486V, and F486S, which are associated with host immune evasion and reduced therapeutic monoclonal antibody efficacy. We demonstrate that these assays can be run individually or multiplexed to detect the presence of up to 4 SNPs in a single assay. We perform these dPCR assays on 81 clinical saliva SARS-CoV-2-positive specimens and properly identify mutations in Omicron subvariants BA.2.75.2, BM.1.1, BN.1, BF.7, BQ.1, BQ.1.1, and XBB. Thus, dPCR could serve as a useful tool to determine if clinical specimens contain therapeutically relevant mutations and inform patient treatment. IMPORTANCE Spike mutations in the SARS-CoV-2 genome confer resistance to therapeutic monoclonal antibodies. Authorization for treatment options is typically guided by general trends of variant prevalence. For example, bebtelovimab is no longer authorized for emergency use in the United States due to the increased prevalence of antibody-resistant BQ.1, BQ.1.1, and XBB Omicron subvariants. However, this blanket approach limits access to life-saving treatment options to patients who are otherwise infected with susceptible variants. Digital PCR assays targeting specific mutations can complement whole-genome sequencing approaches to genotype the virus. In this study, we demonstrate the proof of concept that dPCR can be used to type lineage defining and monoclonal antibody resistance-associated mutations in saliva specimens. These findings show that digital PCR could be used as a personalized diagnostic tool to guide individual patient treatment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Mutación , Reacción en Cadena de la Polimerasa Multiplex , Anticuerpos Monoclonales , Prueba de COVID-19
6.
Hum Gene Ther ; 34(7-8): 303-313, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36927038

RESUMEN

Transplantation, the gold standard intervention for organ failure, is a clinical field that is ripe for applications of gene therapy. One of the major challenges in applying gene therapy to this field is the need for a method that achieves consistent and robust gene delivery to allografts. Normothermic ex vivo perfusion is a growing organ preservation method and a device for cardiac preservation was recently approved by the Food and Drug Administration (FDA) (Organ Care System, OCS™; TransMedics, Inc., Andover, MA); this device maintains donor hearts in a near physiologic state while they are transported from the donor to the recipient. This study describes the administration of recombinant adeno-associated viral vectors (rAAVs) during ex vivo normothermic perfusion for the delivery of transgenes to porcine cardiac allografts. We utilized a myocardial-enhanced AAV3b variant, SASTG, assessing its transduction efficiency in the OCS perfusate relative to other AAV serotypes. We describe the use of normothermic ex vivo perfusion to deliver SASTG carrying the Firefly Luciferase transgene to porcine donor hearts in four heterotopic transplant procedures. Durable and dose-dependent transgene expression was achieved in the allografts in 30 days, with no evidence of off-target transgene expression. This study demonstrates the feasibility and efficiency of delivering genes to a large animal allograft utilizing AAV vectors during ex vivo perfusion. These findings support the idea of gene therapy interventions to enhance transplantation outcomes.


Asunto(s)
Trasplante de Corazón , Porcinos , Animales , Humanos , Trasplante de Corazón/métodos , Perfusión/métodos , Donantes de Tejidos , Terapia Genética/métodos , Aloinjertos
7.
mBio ; 14(1): e0310122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36622143

RESUMEN

The adaptive evolution of SARS-CoV-2 variants is driven by selection for increased viral fitness in transmissibility and immune evasion. Understanding the dynamics of how an emergent variant sweeps across populations can better inform public health response preparedness for future variants. Here, we investigated the state-level genomic epidemiology of SARS-CoV-2 through baseline genomic sequencing surveillance of 27,071 public testing specimens and 1,125 hospital inpatient specimens diagnosed between November 1, 2021, and January 31, 2022, in Arizona. We found that the Omicron variant rapidly displaced Delta variant in December 2021, leading to an "Omicron surge" of COVID-19 cases in early 2022. Wastewater sequencing surveillance of 370 samples supported the synchronous sweep of Omicron in the community. Hospital inpatient COVID-19 cases of Omicron variant presented to three major hospitals 10.51 days after its detection from public clinical testing. Nonsynonymous mutations in nsp3, nsp12, and nsp13 genes were significantly associated with Omicron hospital cases compared to community cases. To model SARS-CoV-2 transmissions across the state population, we developed a scalable sequence network methodology and showed that the Omicron variant spread through intracounty and intercounty transmissions. Finally, we demonstrated that the temporal emergence of Omicron BA.1 to become the dominant variant (17.02 days) was 2.3 times faster than the prior Delta variant (40.70 days) or subsequent Omicron sublineages BA.2 (39.65 days) and BA.5 (35.38 days). Our results demonstrate the uniquely rapid sweep of Omicron BA.1. These findings highlight how integrated public health surveillance can be used to enhance preparedness and response to future variants. IMPORTANCE SARS-CoV-2 continues to evolve new variants throughout the pandemic. However, the temporal dynamics of how SARS-CoV-2 variants emerge to become the dominant circulating variant is not precisely known. Genomic sequencing surveillance offers unique insights into how SARS-CoV-2 spreads in communities and the lead-up to hospital cases during a surge. Specifically, baseline sequencing surveillance through random selection of positive diagnostic specimens provides a representative outlook of the virus lineages circulating in a geographic region. Here, we investigated the emergence of the Omicron variant of concern in Arizona by leveraging baseline genomic sequence surveillance of public clinical testing, hospitals, and community wastewater. We tracked the spread and evolution of the Omicron variant as it first emerged in the general public, and its rapid shift in hospital admissions in the state health system. This study demonstrates the timescale of public health preparedness needed to respond to an antigenic shift in SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Arizona/epidemiología , SARS-CoV-2/genética , COVID-19/epidemiología , Aguas Residuales , Hospitales , Prueba de COVID-19
8.
J Cardiovasc Transl Res ; 16(3): 748-750, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36344902

RESUMEN

The porcine intra-abdominal heterotopic heart transplantation model allows for the assessment of immunologic effects on cardiac transplantation without relying on the allograft to maintain hemodynamic support for the animal. Historically, allograft function and histology is monitored by physical exam, echocardiogram evaluation, percutaneous core biopsy, and open biopsy. We performed transvenous endomyocardial biopsies in three pigs that had undergone heterotopic heart implantation. We describe the procedure to be feasible and reproducible, and that histologic results from these biopsies correlated with those from corresponding tissue collected by surgical dissection at the time of allograft explantation. The ability to perform endomyocardial biopsies in the heterotopic heart transplantation model allows for serial non-invasive monitoring of allograft histology.


Asunto(s)
Trasplante de Corazón , Porcinos , Animales , Humanos , Trasplante de Corazón/efectos adversos , Miocardio/patología , Donantes de Tejidos , Corazón , Biopsia/métodos , Rechazo de Injerto
9.
Emerg Infect Dis ; 28(7): 1520-1522, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654405

RESUMEN

We investigated a university-affiliated cohort of SARS-CoV-2 Omicron BA.2 infections in Arizona, USA. Of 44 cases, 43 were among students; 26 persons were symptomatic, 8 sought medical care, but none were hospitalized. Most (55%) persons had completed a primary vaccine series; 8 received booster vaccines. BA.2 infection was mild in this young cohort.


Asunto(s)
COVID-19 , Vacunas Virales , Arizona/epidemiología , COVID-19/epidemiología , Humanos , SARS-CoV-2 , Universidades
10.
Viruses ; 14(6)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746787

RESUMEN

As the SARS-CoV-2 virus evolves, mutations may result in diminished sensitivity to qRT-PCR diagnostic assays. We investigated four polymorphisms circulating in the SARS-CoV-2 Delta lineage that result in N gene target failure (NGTF) on the TaqPath COVID-19 Combo Kit. These mutations were detected from the SARS-CoV-2 genome sequences that matched with the diagnostic assay results of saliva specimens. Full length N genes from the samples displaying NGTF were cloned into plasmids and assayed using three SARS-CoV-2 qRT-PCR assays. These constructs resulted in reduced sensitivity to the TaqPath COVID-19 Combo Kit compared to the controls (mean Ct differences of 3.06, 7.70, 12.46, and 14.12), but were detected equivalently on the TaqPath COVID-19 Fast PCR Combo 2.0 or CDC 2019_nCoV_N2 assays. This work highlights the importance of genomic sequencing to monitor circulating mutations and provide guidance in improving diagnostic assays.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Mutación , Patología Molecular , SARS-CoV-2/genética , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...